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The apparently-multicomponent subpicosecond intermolecular dynamics of carbon disulfide liquid are addressed
in a unified manner in terms of an inhomogeneously broadened quantum mechanical harmonic oscillator
model for a single vibrational coordinate. For an inhomogeneously broadened (Gaussian) distribution of
oscillators, the model predicts naturally the bimodal character of the subpicosecond intermolecular dynamics
of carbon disulfide liquid, and also the spectral evolution effects (spectral narrowing and saturation) that are
observed for solutions of carbon disulfide in weakly interacting alkane solvents. The unique dynamical signature
of these low-frequency vibrational coordinates is determined largely by the physical constraints on the
coordinates (near equality of oscillator frequency, dephasing frequency, and inhomogeneous bandwidth), such
that constructive and destructive interference effects play a dominant role in shaping the experimental
observable.

I. Introduction

The microscopic origins of the unique spectral and dynamical
characteristics of the intermolecular degrees of freedom in
liquids have been the subject of inquiry for more than three
decades.1-54 Recent advances in nonlinear-optical spectro-
scopy13,16,18-20,32,36,38,43and theoretical approaches37,45-54 have
added significantly to our recognition and understanding of these
dynamic coordinates and led to a resurgence of interest in this
area. Despite these advances, a satisfactory understanding of
intermolecular structure and dynamics of liquids remains elusive.

The primary objective of this report is to present a model
that accounts for the apparently universal signature of the
subpicosecond nonlinear-optical (NLO) response of molecular
liquids.16,17,21-23,29-31,55-59 This characteristic signature is il-
lustrated in Figure 1, which shows the nondiffusive nuclear
contributions to the optical Kerr effect (OKE) impulse response
function of neat CS2 and a 10% (by volume) solution of CS2 in
isopentane. The response consists of an inertially delayed (∼150
fs) rise, an initially rapid, Gaussian-like decay, followed by a
slower, approximately exponential relaxation. Also apparent in
the neat CS2 data is evidence for a weak oscillation with a period
of approximately 800 fs.74 Details of the data analysis procedures
used to extract these response functions are given below.

This unique temporal signature was initially observed in the
OKE responses of nitrobenzene and chlorobenzene liquids;55

carbon disulfide, chloroform, and methylene chloride;16 and
numerous other liquids shortly thereafter.23,56-61 We believe that
the functional form of this response reflects a universal property
of low-frequency intermolecular motions in liquids,27,59and that
a mechanistic understanding of the origin of this characteristic
temporal signature will improve our understanding of molecular
motion in liquids in general, and the nature of nondiffusive
intermolecular degrees of freedom in liquids in particular.

The most elementary interpretations of the universal temporal
signature of molecular liquids are based on multimode curve
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Figure 1. Nondiffusive (vibrational) nuclear contributions to the OHD
OKE impulse response function ofneat CS2 (solid line) and a 10%
(by volume) solution of CS2 in isopentane (dashed line).
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fitting analyses.16,17,21,22,27-29,61 Although these are straightfor-
ward to implement, and have provided significant physical
insight, the assignment of the different fitted components to
unique intermolecular degrees of freedom is not justified in
general. The first attempt to address the unique characteristics
of the intermolecular dynamics in a self-consistent fashion
utilized an inhomogeneously broadened classical-mechanical
harmonic oscillator (HO) model for the intermolecular coordi-
nates.27,59The recognition that the oscillator damping/dephasing
mechanisms in liquids are of the same physical origin, and
exhibit a similar frequency dependence, as the motions of the
intermolecular coordinates themselves led to a model for the
intermolecular coordinates consisting of a superposition of
underdamped, critically damped, and overdamped oscillators.
That superposition model offered a physically intuitive account
for the qualitative characteristics of the experimental data:27,59

destructive interference of the underdamped oscillators gives
rise to the rapid Gaussian-like relaxation, whereas constructive
interference of the critically damped and overdamped oscillators
results in the slowly relaxing tail. As described below, however,
the classical HO model exhibits a serious flaw for continuous
distributions of oscillators with nonnegligible amplitudes as
ωf0, which is generally the case of interest for intermolecular
degrees of freedom in liquids.

In this paper, we revisit the intermolecular dynamics of CS2

in solutions with weakly interacting alkane solvents. The
subpicosecond molecular dynamics of CS2, as a pure substance
and in solution, have been investigated by several laboratories
in recent years using diverse (third and higher order) nonlinear-
optical techniques.13,15-17,19,20,27,30-36,38,39,59,61,62Our initial in-
vestigation of CS2/alkane solutions,17 which utilized a time-
domain multimode curve fitting data analysis, provided significant
insight into the role of microscopic interactions in shaping the
ultrafast intermolecular dynamics. The conclusions of that work
were largely reinforced in a more recent study that utilized
Fourier transform/deconvolution data analysis procedures to
separate uniquely the nuclear and electronic contributions to
the OKE data and generate a spectral density representation of
the nuclear dynamics.27,62 In that study, the interpretation of
the intermolecular vibrational contributions to the spectral
density was premised on the classical HO model, with the
distribution of damping conditions noted above.

Recently, the OKE dynamics of the CS2/alkane system were
analyzed in terms of a multimode Brownian oscillator model.31

There are few practical distinctions between the Brownian
oscillator model and the classical HO representation, and
although the physical trends identified in our earlier studies17,27,62

were largely corroborated, the authors presented some interesting
heuristic arguments that led them to question interpretations
derived from the multimode and classical harmonic oscillator
model analyses. These issues are addressed in the following
sections. Another recent report showed a strong correlation
between the 1/e times for reorientational diffusion and the
exponential “tail” of the subpicosecond intermolecular re-
sponse.30 That correlation led to the suggestion that the
exponential “tail” is a consequence of spectral diffusion of the
intermolecular oscillators arising from fluctuations in the
intermolecular potential as molecules reorient.

In what follows, we investigate the implications of an
inhomogeneously broadened quantum mechanical harmonic-
oscillator model37 for the description of subpicosecond dynamics
in molecular liquids. The conclusions of this analysis are, in
many ways, similar to those of the classical HO model, with
the observed dynamics determined largely by the physical

constraints on the intermolecular coordinates. In particular, in
the presence of inhomogeneous broadening, the near equality
of the oscillator frequencies and (homogeneous and inhomo-
geneous) dephasing bandwidths gives rise to constructive and
destructive interference effects that are unique to these combina-
tions of parameters, and result in the unique temporal signature
characteristic of intermolecular modes in liquids (cf., Figure 1).
Also, because the relationship between frequency and damping
rate (frequency pulling effect) is absent in the quantum model,
the transients are well behaved asωf0. Finally, we show how
the evolution of the intermolecular spectral density of CS2 in
serial alkane dilutions can be described by the dependence of a
single generalized intermolecular coordinate on multipolar
intermolecular interactions.

II. Experimental Section

A. Experimental Details. The experimental procedures of
the optical heterodyne detected (OHD) OKE have been dis-
cussed previously;16,26,27,58only the essential features will be
repeated here. The data used in this study were generated using
modelocked Ti:sapphire lasers that generate 20-40 fs nearly
transform-limited optical pulses near 800 nm. The laser output
is divided by an uncoated glass optical flat (BK-7A or fused
silica) with the front surface reflection directed through a
computer-controlled optical delay line. This probe beam is
polarized with a calcite Glan-Taylor polarizer, passed through
a broadbandλ/4 waveplate, and focused into the 1 mm fused
silica sample cell by a 6 cmfocal length achromatic doublet.
The probe beam is then recollimated and analyzed by a second
matched polarizer, the transmission of which is detected with a
photomultiplier tube/lock-in amplifier combination. The signal
is recorded as a function of the delay between the pump and
probe pulses and stored on a computer.

Static strain birefringence in the lens and sample cell are
compensated for by fine adjustments of the waveplate (a
corresponding adjustment of the probe analyzer polarizer is
sometimes required). The pump beam is polarized 45° relative
to the probe with aλ/2 waveplate/polarizer combination,
modulated with a kilohertz chopper, passed through a matched
optical flat to balance the arms of the interferometer, and
overlapped with the probe beam in the sample by the achromat.
The optical local oscillator is introduced with theλ/4 waveplate
positioned between the crossed polarizers oriented with its “fast”
axis parallel to the polarization plane of the probe beam. A slight
rotation (<1°) of the input polarizer introduces a small
orthogonal polarization component (the local oscillator) that is
90° out-of-phase with the probe field. The out-of-phase local
oscillator is in quadrature with the real part of the nonlinear
susceptibility, and the detected (heterodyne) signal (the induced
birefringence) is nominally linear in the pump beam intensity.

The heterodyne signal is contaminated with the homodyne
signal (which scales quadratically with the pump intensity), with
the degree of contamination depending on the amplitude of the
local oscillator. The pure heterodyne responses can be recovered
by constructing the sum of data scans collected with positively
and negatively sensed local oscillators; this operation eliminates
the homodyne contamination of the heterodyne signal.26

B. Data Analysis Procedures.The theoretical development
associated with the optical heterodyne detected optical Kerr
effect experiment and the relevant Fourier transform relation-
ships are described in detail elsewhere;18,58 only the essential
expressions will be repeated here. For Fourier transform-limited
optical pulses and a local oscillator that is 90° out-of-phase with
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the probe field, the transmission function for the Kerr cell is
described by the relation

where G0
(2)(τ) is the background-free laser pulse intensity

autocorrelation function,Reff
(3)(t) ∝ Reøeff

(3)(t) is the time-domain
OKE impulse response function of the medium,τ is the delay
between pump and probe pulses, and the asterisk (*) indicates
a convolution operation. Fourier transformation of 1 gives rise
to the frequency-domain product

where theF{} indicate Fourier transform operations. Equation
2 explicitly describes the spectral-filter effect of finite bandwidth
optical pulses on the intrinsic frequency response of a material.
Because bothT(τ) and G0

(2)(τ) are experimentally measured
functions, the frequency dependent susceptibility can be deduced
from 2 using the relationship

where∆ω ) ωm ( ωn, theωm,n are Fourier components of the
pump pulse,ê is a constant, andøeff

(3)(∆ω) is the third-order
OKE frequency response function (spectral density) of the
material.

In this study, our primary interest is in the nuclear part of
the NLO response. The nuclear and electronic contributions can
be separated on the basis of symmetry and by recognizing that18

where H(t) is the Heaviside step function andRnuc(t) is the
nuclear part of the impulse response function. All of the
information on the nuclear response of the material to the optical
pulses is contained inIm øeff

(3)(∆ω).18

III. Theory

Within the Born-Oppenheimer approximation, the third-order
nonlinear-optical impulse response function may be written as
a sum of electronic and nuclear parts

In the analysis of experimental data, it is always desirable to
describe the dynamics (or spectrum) of a system in terms of a
unified model that minimizes the number of free fitting
parameters. Unfortunately, the complexity of condensed matter
systems often precludes such analyses. In the case of molecular
liquids, it is common to treat the nuclear part of the NLO
response function as a sum of contributions

Equations 5 and 6 form the basis of the commonly used
multimode curve-fitting data analyses. In such analyses, func-
tional forms are assumed for a finite number of theri, with the
various parameters adjusted to obtain the best agreement with
the data. For the intermolecular dynamics of highly symmetric
species (such as CS2 and CH3CN), the experimental OKE data
have revealed the existence of three distinct time scales,16,17,58,59

resulting in a minimum of three terms in eq 6 when the

individual ri are treated as exponential and damped sinusoidal
functions.75 The assignment of the three contributions to specific
nuclear coordinates or well-defined physical processes, however,
lacks rigorous physical justification.

In what follows, we focus on the nondiffusive contributions
to the nuclear dynamics. If we assume separability of the
diffusive (orientational anisotropy) and vibrational (nondiffusive)
contributions to the signal, the nuclear impulse response function
can be represented as a sum of two terms

Distinguishing between the diffusive and the vibrational con-
tributions as in eq 7 has been widely utilized in the analysis of
femtosecond NLO data, and is usually premised on time scale
separation arguments.16,63 For the purposes of this paper, we
refer to the “vibrational” part of the signal as those contributions
that are nondiffusive in character (e.g., do not conform to
Debye-Stokes-Einstein (DSE) type behavior) and typically
exhibit subpicosecond decay characteristics. This signal com-
ponent is associated with dynamically coherent nuclear motions,
and can contain contributions from diverse origins such as
molecular librational or free rotational motions, translational
modes that lead to a net change in the polarizability (through
interaction-induced effects), as well as more complex lattice-
like “collective” modes that can involve the reorientation and
translation of locally ordered groups of molecules. This signal
component decays through dephasing and population relaxation.
The diffusive contribution, in contrast, is associated with an
orientational anisotropy that decays through the random, thermal
fluctuations which are highly correlated with bulk properties
such as viscosity and diffusivity.

In the following sections, we assume validity of eq 7, and
focus our attention on the vibrational nuclear contributions,
rV

(3)(t). The experimental data are analyzed in terms of two
models that treat the vibrational dynamics in a self-consistent
manner. The first is the classical-mechanical HO model noted
above;59 the second is a HO model derived from a quantum-
mechanical quantum-mechanical development in which dephas-
ing is implemented in the weak coupling limit.37 Both models
account for the coarse qualitative features of the experimental
data, but differ significantly in their low-frequency behaviors.
We note that neither model should be considered purely “single-
particle” in nature. More correctly, each should be considered
an “harmonic coordinate” model in which the precise identity
(i.e., single molecular vs collective) of the individual oscillators
need not be specified. Although it is tempting to assign response
functions to the vibrational motion of single-molecule “libra-
tors”, and such assignments certainly help develop a physical
picture of the system, they could just as easily be identified
with delocalized “phonon-like” modes. It is likely that reality
lies somewhere between these extremes.

A. Classical Oscillator Model. In previous analyses of
intermolecular dynamics,27,59we introduced a classical oscillator
representation that recognized the unique characteristics of
intermolecular vibrational coordinates compared to those of the
more familiar intramolecular vibrational modes. Those unique
characteristics are a consequence of three effects: (i) the
vibrational potential is defined by the (mostly nearest neighbor)
intermolecular potential (this is in contrast to intramolecular
modes where the intermolecular potential appears as a small
perturbation); (ii) the vibrational frequencies span the same time
scale as the dephasing and relaxation processes for these modes;
and (iii) local fluctuations in the intermolecular potential

T(τ) ) ∫-∞

∞
G0

(2)(τ - t) Reøeff
(3)(t) dt ) G0

(2)(τ) * Reff
(3)(τ) (1)

F{T(τ)} ) F{G0
(2)(τ)}F{Reff

(3)(τ)} (2)

øeff
(3)(∆ω) ) êF {Reff

(3)(t)} (3)

Rnuc
(3) (t) ) 2 F -1{Im øeff

(3)(∆ω)} H(t-t0) (4)

Reff
(3)(t) ) γ(t) + Rnuc

(3) (t) (5)

Rnuc
(3) (t) ) ∑

i

ri(t) (6)

Rnuc
(3) (t) ) rV

(3) + rd
(3)(t) (7)
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responsible for the decay processes also give rise to distributions
in the oscillator frequencies (inhomogeneous broadening) that
persist over the time scale of the fluctuations. These consider-
ations can be expressed by the relation

whereω is the oscillator frequency,ωc is a critical frequency
related to the 1/e time for fluctuations of the liquid local structure
(which results in dephasing and relaxation of intermolecular
vibrational coordinates), and∆ω is the width of the inhomo-
geneous frequency distribution of the oscillator.

In the classical oscillator model,27,59 the first equality of 8
forces consideration of the possibility that any of the three
solutions to the classical HO equation of motion, underdamped,
critically damped, and overdamped, may contribute to the
dynamics of the intermolecular coordinate. This is in stark
contrast to the case for intramolecular vibrational modes, which
are almost always strongly underdamped. Expressed formally
these three solutions are given by

in which eqs 9a, 9b, and 9c correspond to the underdamped,
critically damped, and overdamped solutions, respectively,ωoi

is the undamped frequency of the oscillator. The quantities

and

are the effective frequency and damping rate, respectively.
Equations 10 define the mutual “pulling” of the oscillation
frequency and damping rate for classical harmonic coordinates.
Of the response functions 9, only the first actually oscillates;
the other two rise and decay to zero in a monotonic fashion.

The second equality of 8 implies that, when the vibrational
coordinate is inhomogeneously broadened, all three solutions
can contribute to the response for a single dynamical coordinate.
The vibrational response function then can be represented by a
superposition of the solutions 9, and can be represented in the
general form

in which the amplitudes of the different frequency components
are collected in the distribution function,g(ω), the subscriptV
denotes that we are considering only the vibrational part of the
nuclear response function (cf., eq 7), the integral is over all
frequency components of the inhomogeneously broadened
ensemble, and we have written eqs 9 in the more compact form

which allows for complex frequency arguments. These general
results, eqs 11 and 12, are formally identical to those presented

elsewhere31 for the Brownian oscillator representation in the
limit of a linear dependence of the polarizability on the nuclear
coordinates.

Equations 9-12 illustrate that, when the physical constraints
of the system are recognized (eq 8), the classical harmonic
oscillator treatment leads naturally to a superposition of under-
damped, critically damped, and overdamped oscillators (a
situation that appears to be unique to low-frequency intermo-
lecular degrees of freedom), and this simple functional form
can account for the rather complex bimodal dynamical profiles
and line shapes of the intermolecular degrees of freedom in a
self-consistent manner. Equations 9 through 12 represent the
vibrational response of a single intermolecular coordinate. In
the event that multiple coordinates contribute to the system
response, a superposition of solutions 11 is required.

We point out one obvious shortcoming of the classical model
that has not been noted previously. For fixedγ, as the frequency
ωoi decreases toward zero, the effective decay rate of an
overdamped oscillator,γi, also approaches zero (eqs 10). That
is, the decay time (1/γi) of an overdamped contribution to the
signal increases as the frequency is decreased. This is a general
characteristic of classical overdamped oscillators with practical
consequences for continuous distributions of oscillator frequen-
cies with nonvanishing amplitude asω f 0 (the common
situation for simple molecular liquids). In this case, the classical
oscillator model predicts a slowly decaying component in the
response function due to the lowest frequency (overdamped)
oscillators in the distribution, a result that conflicts with
experimental observations (Vide infra).

B. Quantum Oscillator Model. A quantum mechanical
harmonic oscillator representation of the nonlinear-optical
response of transparent liquids to electronically nonresonant
radiation has been developed in the Born-Oppenheimer limit
by Steffen, Fourkas, and Duppen.37 Response functions for third-
and fifth-order NLO processes were characterized in the limits
of homogeneous and inhomogeneous broadening of the nuclear
transitions. Here, we summarize the key results of that work
that are relevant to the third-order processes.

Using a perturbative treatment the nonlinear-optical polariza-
tion, third-order in the applied field, may be written in the form65

where Rijkl
(3) is the third-order nonlinear-optical impulse re-

sponse function. For transparent media in which all applied
optical frequencies are well below any electronic resonances,
the Born-Oppenheimer (BO) approximation may be employed.
Within the BO approximation, when the optical frequencies are
well above all (dipole allowed) nuclear resonances, only two
terms contribute to the third-order NLO response function37

The first term on the rhs of eq 14 corresponds to the
instantaneous nonlinear electronic hyperpolarizability, and the
second term to Rayleigh/Raman scattering processes. In this
expression [A,B] denotes a commutator,Ã(t) indicates that the
operatorA is in the interaction representation,δ(t) represents
the Kronecker delta function,H(τ1) represents the Heaviside
step function, and the response function in terms of the (single)
positive propagation time,τ1 ) t1 - t2 with t ) t1 andt2 ) t3,
whereτ1 is the delay between the pump and probe laser pulses.37

ω ≈ ωc ≈ ∆ω (8)

ri(ωi,t) ) 1
ωi

exp(-γt) sin (ωit), ωoi > γ (9a)

ri(ωi,t) ) t exp(-γt), ωoi ) γ (9b)

ri(ωi,t) ) 1
ωi

exp(-γit) [1 - exp(-2ωit)], ωoi < γ (9c)

ωi ) |ωoi
2 - γ2|1/2 (10a)

γi ) γ - ωi (10b)

rV
(3)(t) ) ∫0

∞
dω g(ω) r(3) (ω, t) (11)

r(3)(ωi, t) ) 1
ωi

exp(-γi t) sin (ωi t) (12)

Pi
(3)(t) ) ∫-∞

∞
dt1∫-∞

∞
dt2∫-∞

∞
dt3 Rijkl

(3)(t,t1,t2,t3),Ej(t1)Ek(t2)El(t3)

(13)

Rijkl
(3)(t,t1,t2,t3) ) 〈γijkl〉δ(τ1) + i

p〈[R̃ij(t),
1
2

R̃kl(t2)]〉H(τ1) (14)
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The representation of eq 14 permits identification of theRnuc
(3) (t)

defined in eq 5 with the commutator of the effective molecular
polarizability (for the OKE, the commutator would be over the
anisotropic part of the polarizability). We will show later that
the subsequent decomposition ofRnuc

(3) (t) to a sum of linear
terms (eq 6) presumes that the polarizability is a strictly linear
function of the nuclear coordinates of the medium (the Placzek
approximation). The meaning of the quantityøeff

(3)(∆ω) (eqs 3
and 4) and the linear decomposition ofRnuc

(3) (t) with respect to
the coordinate dependence of the polarizability are discussed
in greater detail in section IV-E.

An expression for the third-order polarization may be found
by inserting eq 14 into eq 13. A more useful expression for the
response function is obtained by evaluating the commutators
and transforming the polarizability operators back into the
Schrödinger representation37

giving the result

whereP(λ) denotes the equilibrium distribution of eigenstates
|λ〉, ελ is the energy of eigenstate|λ〉, the dependence of the
polarizability on the nuclear coordinates “q” is explicitly
indicated, and for simplicity, the tensorial notation has been
suppressed. Again, because we are interested only in the nuclear
response functions, from this point forward we consider only
the second term on the rhs of 16.

The response function 16 is a general result for nuclear motion
under nonresonant excitation, and does not depend on the
specific forms of the Hamiltonian or the polarizability operator.37

Calculation of the matrix elementsRλµ requires the adoption of
a model for nuclear motion. For harmonic motion, the nonlinear-
optical response function can be transformed into terms of the
HO eigenstates|λ〉. Under the constraints of damping in the
weak coupling limit and a linear dependence of the polarizability
on nuclear coordinates, the quantum HO expression for the third-
order nonlinear response function becomes37

whereR1 is defined by the polynomial expansionR(q) ) R1q
+ R2q2 + ‚‚‚, and the subscriptV indicates that we consider
only the nuclear (vibrational) contribution to eq 16. When
damping is assumed to be independent of the quantum number
(level independent damping) eq 17 reduces to

in which the dephasing is fully described by a single decay rate
of the form

In this expression,γ is the population decay rate,Γ* is the pure
dephasing rate and, for the present analysis, we assume thatΓ
is frequency independent. Inhomogeneous broadening is con-

sidered using eq 11 in the same manner as for the classical
oscillator model.

Equation 18 is similar to eq 12, with one notable exception;
in the weak coupling, limit the frequency and damping argu-
ments of eq 18 are not constrained by the frequency pulling
relationships of eqs 10. Thus, the oscillators described by 18
are, in the classical sense, always underdamped, and approach
the critically damped limit (eq 9b) whenΓ > ω. For an
inhomogeneously broadened ensemble of molecular oscillators
(eq 11), the practical consequences of the quantum oscillator
model (eq 18) are similar to those of the classical model (eqs
9, 10, and 12): destructive interference of the more strongly
underdamped components gives rise to a rapid, Gaussian-like
decay, followed by a quasi-exponential relaxation arising from
constructive interference of the nearly critically damped com-
ponents. The key distinction being that, for the weak coupling
model,the absence of oVerdamped oscillators ensures that the
ensemble-aVeraged dynamical profile decays in a physically
realistic mannerat longer times, a result that gives rise to
excellent agreement with the experimental data.

IV. Results and Discussion

In what follows, we analyze the experimental OHD OKE data
for neatCS2 and its solutions in alkane solvents in terms of the
classical and quantum harmonic oscillator models presented
above. It is shown that, although the classical model diverges
significantly from the experimental data at long times (τ > 1.5
ps), the quantum-mechanical model does an excellent job of
describing the CS2 data at all times. In particular, the “universal”
response of the low-frequency intermolecular modes: a Gauss-
ian-like initial decay followed by a quasi-exponential, interme-
diate time scale relaxation, is correctly predicted by the response
function for a single inhomogeneously broadened nuclear
coordinate. Further, we find that for a Gaussian distribution of
oscillator frequencies, the quantum-based model describes the
dynamical and spectral evolution observed on increasing dilution
in alkane solvents, and accounts naturally for the experimentally
observed31,27 saturation of the spectral shift at low CS2

concentrations.
A. Intermolecular Vibrational Dynamics of CS2. The

essential details of the third-order NLO response of CS2 can be
seen in the data of Figure 1, which shows the intermolecular
vibrational part of the OHD OKE impulse response functions
for neat CS2 and a 10% solution of CS2 in isopentane. The
impulse response functions of Figure 1 were generated from
the measured OKE data using eqs 2-4, with the tail-matched
diffusive reorientational contribution removed in accordance
with eq 7. Analogous results are obtained for the other alkane
solvents investigated.27

These data reveal clearly the ubiquitous signature of inter-
molecular dynamics in liquids: inertially delayed rise and a
bimodal decay consisting of a rapid Gaussian part followed by
a slower quasi-exponential relaxation. On dilution in alkane
solvents, the response function evolves toward a more expo-
nential decay characteristic, with the relative amplitude of the
Gaussian-like contribution decreased (cf., Figure 1). This
evolution is most apparent in a spectral density representation
of the data (cf., eq 4), where the vibrational spectrum changes
shape significantly as it narrows and shifts to lower frequency
with increasing dilution. Examples of this spectral evolution
are given in references 27 and 31.

A description of the CS2/alkane OKE data in terms of an
inhomogeneously broadened ensemble of intermolecular har-
monic oscillators leads naturally to an intuitive physical picture

〈λ|R̃(t)|µ〉 ) 〈λ|R|µ〉 ei(ελ - εµ)t/p ≡ Rλµe
iωλµt (15)

R(3)(τ1) ) 〈γ〉δ(τ1) +
1

p
∑
λ,µ

P(λ) Rλµ(q) Rµλ(q) sin(ωλµτ1)

(16)

rV
(3)(τ1) ) -

R1
2

2mω
sin(ωτ1)∑

λ

P(λ)[λe-Γλ,λ-1τ1 -

(λ + 1)e-Γλ,λ+1τ1] (17)

rV
(3)(ω,t) )

R1
2

2mω
e-Γt sin(ωt) (18)

Γ ) γ + Γ* (19)
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that describes the observed spectral evolution. Within this
framework, the curvature of the multipole intermolecular
potential is decreased as the CS2 molecules are replaced in the
liquid by the weakly interacting alkane species, giving rise to a
shift of the spectral density to lower frequencies.17,27 In the
discussion below, it is shown that, within the quantum harmonic
oscillator model, the number density effect on the intermolecular
potential is the dominant factor contributing to the spectral
evolution observed for the CS2/alkane system, and that (higher-
order) interaction-induced effects, which have been shown by
simulations to make a small contribution the intermolecular
spectral density,52 need not be implicated.31

The two HO models described in section III can be applied
to inhomogeneously broadened systems through the use of eq
11. This requires the choice of a distribution function,g(ω).
Assuming that the inhomogeneity is a consequence of a
Gaussian random process, a Gaussian form forg(ω) might be
expected. Two Gaussian functions that meet the boundary
conditions for intermolecular vibrational modes have been used
to representg(ω). The first is the “antisymmetrized” Gaussian
function61

and the second is commonly referred to as the “modified
Gaussian” function

in which ωo and σ are parameters which, for an isolated
Gaussian distribution, correspond to the center frequency and
standard deviation, respectively. In what follows, since the
functions of eqs 20 and 21 are not symmetric aboutωo, we
refer to ωo and σ as the characteristic frequency and width
parameters, respectively. These two functions are very similar
for low-frequency resonances, and parameters can be chosen
such that the frequency distributions of the two are nearly
identical (although the parameters for each will be different).
For the range of parameters relevant to the current analysis,
the only significant difference between the two is that the
antisymmetrized Gaussian carries somewhat more amplitude on
its low-frequency edge when the parameters are adjusted to
ensure that the two distributions match at the peak and on the
high-frequency edge. In this study, we utilize both functions in
analyses of the experimental data for both HO models, with
the results being similar for each. We note that the “antisym-
metrized” form of the Gaussian function given in eq 20 arises
naturally in the OKE because the spectral density function is
antisymmetric about∆ω ) 0 (it is common practice to plot
only the positive-frequency half). In the limit thatωo . σ, as
is generally true for intramolecular modes, the positive and
negative frequency contributions to eq 20 do not interfere and
can be treated independently. It is only in the limit thatωo and
σ are of the same magnitude that it is necessary to consider
both terms explicitly as in eq 20.

B. Application of the Classical Model.TheneatCS2 OHD
OKE vibrational impulse response function is shown again in
Figure 2, together with a fit to the classical oscillator model
described in section IIIA (eq 11 using the response function
from eqs 9, 10, and 12). The parameters used in this fit are
identical to those of reference 31 and, therefore, the modified

Gaussian model is used in this case. Clearly evident, especially
in the log plot, is the divergence of the fit from the data at times
greater than 1 ps. This divergence is a consequence of the
inclusion of overdamped oscillators in this model response
function, and the mutual pulling of the oscillator damping and
frequency (eqs 10), as is discussed in section IIIA above, and
is a general result for distribution functionsg(ω) that have any
significant amplitude for frequencies below the critical frequency
of ωoi ) γ. Similar results are obtained for the antisymmetrized
Gaussian function, with the exception that the divergence at
long times is somewhat greater. We note that the failure evident
in Figure 2 is for the particular classical HO model described
in section III. It is entirely possible that other approaches based
on classical dynamics, such as the stochastic models of Kubo,66

may provide an equally adequate description of the experimental
data as the quantum-mechanical-based model described below.76

C. Application of the Quantum Model. The CS2 OHD OKE
vibrational impulse response function is shown again in Figure
3, this time with a fit to the inhomogeneously broadened
quantum oscillator model described in section IIIB (eq 11 using
the response function eq 18). Neglecting the normalization
factor, the fitting procedure involves three parameters:ωo and
σ of the distribution function (eq 20), andΓ of the oscillator
impulse response function (eq 18). Parameters for the fit shown
in Figure 3, and those for the pentane dilutions (vide infra), are
collected in Table 1.

As is evident, the quantum HO oscillator model for a single
nuclear coordinate does an excellent job of describing the
temporal dynamics of theneatCS2 OKE vibrational response
function at all probe delays. We note that the only adjustable
parameters are those cited in the previous paragraph, and that
there are no independent parameters for adjusting the relative
amplitudes of the Gaussian-like and quasi-exponential features

g(ω) ) 1
2σ{exp[-

(ω - ωo)
2

2σ2 ] - exp[-
(ω + ωo)

2

2σ2 ]}
(20)

g′(ω) ) ωexp[-
(ω - ωo)

2

2σ2 ] (21)

Figure 2. OHD OKE vibrational impulse response function for neat
CS2 (solid line) is shown together with a fit (dashed line) to the classical
harmonic-oscillator model.ωo ) 7.08 ps-1; σ ) 2.77 ps-1; γ ) 5.26
ps-1.
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of the fitted functions. Similar results are obtained when the
modified Gaussian distribution function is used with the
quantum oscillator model. A significant conclusion from the
result of Figure 3, then, is that the quantum oscillator model,
which is based solely on a Gaussian distribution of exponentially
damped harmonic oscillators, provides a remarkably accurate
account for both the qualitative characteristics and the quantita-
tive details of the experimental data.

D. CS2/Alkane Dilution Data. Figure 4 shows the simulated
behavior of the quantum oscillator model under conditions that
are similar to those observed for the CS2/alkane dilutions. This
example illustrates the behavior of the inhomogeneous response
function (eq 11) using the antisymmetrized Gaussian distribution
function (eq 20) as a function ofωo with σ andΓ held constant.
The parameters chosen for the highest-frequency distribution
correspond to those extracted from the fit of Figure 2 forneat
CS2: ωo ) 8.5 ps-1 (45 cm-1), σ ) 5.0 ps-1 (26.6 cm-1), and
Γ ) 1.1 ps-1.

It is clear from these simulations that, asωo is decreased,
the temporal response broadens and the Gaussian-like contribu-
tion becomes less prominent. Forωo values below 2.5 ps-1 (∼
13 cm-1), the dynamical profile undergoes no significant further
eVolution. The 2.0 ps-1 curve of Figure 4, therefore, represents
a limiting case after which no further evolution in the dynamical
profile occurs.

A frequency-domain representation of the Figure 4 result is
shown in Figure 5. As is evident, the spectral density narrows
and shifts to lower frequency as the characteristic frequency of
the distribution,ωo, is reduced. Analogous to the time-domain
data, the spectral evolution saturates forωo values below 2.5
ps-1, with the 2.0 ps-1 curve representing the limiting case.
The results of Figures 4 and 5 bear a striking resemblance to
the CS2/alkane OKE data, examples of which are illustrated in
Figure 1 and in references 27 and 31.

A significant characteristic of the simulations of Figures 4
and 5 is the saturation of the spectral/dynamical evolution as
the characteristic frequency of the oscillator distribution function

Figure 3. OHD OKE vibrational impulse response function forneat
CS2 (solid line) is shown together with a fit (dashed line) to the quantum
mechanical harmonic-oscillator model.ωo ) 8.5 ps-1; σ ) 5.0 ps-1; γ
) 1.10 ps-1.

TABLE 1

ωo (ps-1) νjo (cm-1)a σ (ps-1) σj (cm-1)a 1/Γ (ps)

neat 8.5 45 5.0 27 0.91
75% 7.0 37 6.0 32 0.85
50% 5.5 29 6.0 32 0.91
20% 2.0 11 5.5 29 0.70

a νo ) ωo/2πc; σj ) σ/2πc.

Figure 4. Behavior of eq 11 using the antisymmetrized Gaussian
distributionfunction (eq 21) as a function ofωo with σ and Γ held
constant.σ ) 5.0 ps-1 (26.6 cm-1), andΓ ) 1.1 ps-1.

Figure 5. Spectral density representation of the data of Figure 4. The
spectral evolution saturates forωo values less than 2.5 ps-1 (13.3 cm-1),
with the 2.0 ps-1 curve representative of this limiting case.

7966 J. Phys. Chem. A, Vol. 105, No. 34, 2001 McMorrow et al.



ωo shifts to lower frequency. A similar saturation effect is
observed in the experimental data for CS2/alkane solutions, as
has been noted elsewhere.31 Thus, althoughωo is expected to
continue to decrease as the number density of CS2 decreases
(for a multipolar interaction), both the dynamical waveform and
spectral density cease to evolve. This saturation effect is not
inconsistent with the interaction model, and is a consequence
of the unique frequency relations for intermolecular coordinates
at low frequencies that fulfill the relationshipω ≈ ωc ≈ ∆ω
noted above.

The quantum oscillator model has been applied to OHD OKE
data collected for a series of CS2 solutions inn-pentane. The
results of this analysis for the different mixtures are collected
in Table 1. Figure 6 shows the vibrational impulse response
function for a 20% solution of CS2 in n-pentane, together with
a fit to the quantum oscillator model. The quality of the fit in
this case is comparable to that of Figure 3 forneat CS2. For
each of the solutions investigated, the agreement is quite good,
considering the complexity of the waveforms involved and the
simplicity of the model (the results of Figure 6 represent the
poorest agreement of the data sets analyzed). It is important to
note again that the fitted response function represents a single,
inhomogeneously broadened harmonic coordinate.

The data of Table 1 reveal that, within the framework of the
inhomogeneously broadened quantum harmonic oscillator model,
the primary contributor to the dynamical/spectral evolution of
the CS2/alkane data is a shift in the characteristic frequency,
ωo, of the distribution function,g(ω). Both the width parameter,
σ, and the relaxation rate,Γ, remain relatively unchanged
through the series. The fitted data of Figures 3 and 6 reveal
that the quantum oscillator model for a single nuclear coordinate
does an excellent job of accounting for the qualitative trends
of the CS2/n-pentane OKE data, and a very good job with the
quantitative agreement. We note that the fitting parameters given

in Table 1 are fairly unique (to within the experimental error),
such thatσ and ωo cannot be played against one another to
obtain equally good agreement, and that the quality of the fit is
quite sensitive to variations of the parameters. We also note
that the reduced data sets used in this analysis are sensitive to
both the quality of the original data and the procedure used for
removing the diffusive reorientational contribution. Nevertheless,
the ability of the model to account for the trends of the data is
impressive. It is interesting to note that while the experimental
spectral bandwidth decreases with increasing dilution, the
characteristic width parameter,σ, of the quantum HO model
remains effectively constant. This is in contrast to the behavior
of the classical HO and multimode analyses, in whichσ
decreases in a monotonic fashion with increasing alkane
concentration.17,27,37The present result is in agreement with the
expectations of reference 31.

Further, we note that the relaxation rateΓ is not equivalent
to the 1/e time of the exponential tail of the intermolecular
response (cf., Figure 1). Within this model, the subpicosecond
quasi-exponential decay feature of the intermolecular response
in liquids is accounted for without invoking a dynamic process
that matches the experimentally observed 1/e time constant (the
value of the observed 1/edecay time of the intermolecular “tail”
is approximately one-half of the damping constant 1/Γ extracted
from the analysis). As a result, the common assumption that
this time constant directly represents the rate of local structure
fluctuations in liquids needs to be reexamined.

It is interesting to compare the experimentally measured
spectral density to the distribution function,g(ω), determined
from the fitting procedure. Figure 7 shows the vibrational
spectral density function for neat CS2 (the imaginary part of
the Fourier transform of the response function shown in Figure
3), together with the distribution function corresponding to the
theoretical curve of Figure 3. The striking difference between
the two curves arises from the 1/ω dependence of the response
function, eq 18, which leads to a nonlinear weighting of the
lowest-frequency contributions to the density of states. Clearly,
this effect has a profound impact on the experimental observable.

V. Discussion

The quantum mechanical HO model applied in the previous
sections does an excellent job of accounting for both the
qualitative and quantitative aspects of the CS2/alkane OKE data.

Figure 6. OHD OKE vibrational impulse response function for a 20%
solution of CS2 in n-pentane (solid line) is shown together with a fit to
the quantum mechanical harmonic-oscillator model (dotted line).

Figure 7. Experimentally measured spectral density function for neat
CS2 compared to the distribution function,g(ω), determined from the
fitting procedure and used to generate the theoretical curve of Figure
3.
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The complex dynamical profile (or line shape) associated with
the subpicosecond intermolecular dynamics is addressed in a
unified manner in terms of a simple functional form. The three-
parameter response function provides an excellent account of
the complex dynamical profile ofneat CS2, as well as the
evolution in this dynamical profile as CS2 is diluted with weakly
interacting alkane solvent. The description of the intermolecular
dynamics of the highly symmetric CS2 molecule in terms ofa
singleVibrational coordinateis quite appealing, eliminating the
need to assign the intermediate-lifetime, quasi-exponential
relaxation to a unique nuclear coordinate (as is necessary in
multimode curve fitting approaches). For highly symmetric
molecular species, such as CS2, such assignments are question-
able, at best.

The present model provides insight into the origin of the
complex intermolecular OKE line shape, and suggests that the
apparent universality of the quasi-exponential relaxation is a
natural consequence of the low-frequency nature of intermo-
lecular vibrational modes in liquids. This signal contribution is
expected whenever the oscillator frequency,ω, becomes less
than that of the damping/dephasing rate,Γ, as is the usual
condition for the intermolecular coordinates of molecular liquids.
The present analysis does not, however, address the physical
origin of the exponential time constant, which is characterized
by the parameterΓ. A recent analysis of temperature-dependent
OHD OKE data for a range of symmetric top molecular liquids
provides insight into this issue.30 That work revealed that the
exponential relaxation time is highly correlated with the
collective orientational correlation time, suggesting that the time
constant might be a consequence of spectral diffusion.30 This
hypothesis seems reasonable within the framework of our
present understanding of the nature of intermolecular coordinates
in liquids. As noted in,30 however, additional work is required
to test this hypothesis.

Recently, Steffen et al.31 noted some peculiar aspects of the
behavior of the CS2 OKE with respect to dilution in alkane
solvents. The two primary observations noted were as follows:
(i) very little spectral evolution occurs for CS2 concentrations
below 20 vol % even though, at this concentration, the CS2

molecules are not yet fully solvated by alkane molecules; and
(ii) an apparent decrease in the inhomogeneous spectral width
is observed on dilution when, on the basis of entropy consid-
erations, a broadening is expected. Each of these observations
is addressed within the framework of the quantum HO models
described here. When the unique characteristics of intermo-
lecular degrees of freedom are considered, the observed behavior
is in agreement with expectations based on first-order changes
in the multipole intermolecular potential, and it is unnecessary
to speculate on higher-order effects as the primary cause of the
observed spectral evolution.

We return to the issue of the saturation of the spectral shift
for CS2 concentrations of less than 20%, which is addressed
above in the discussion of Figures 4 and 5. The behavior of the
spectral density and temporal response functions noted there is
a consequence of two effects that originate in the equalities of
eq 8. The first half of eq 8 relates to the fact thatω ≈ Γ for
intermolecular oscillators. For constantΓ, as the oscillator shifts
to lower frequency (ω < Γ), the impulse response function
approaches the critically damped limit. In this case eq 18 can
be written as

As is evident, in this limit, the impulse response function is

independent of frequency and depends exclusively on the
dephasing rate,Γ. Thus, to the extent thatΓ is constant, all
oscillators for which the limiting condition ofω , Γ is fulfilled
will exhibit identical OKE response functions. This limiting case
is attained forω ≈ Γ/4, but the oscillators begin to take on
critically damped character asω becomes less thanΓ.

A second contribution to the saturation effect arises as a
consequence of the inhomogeneous character of the intermo-
lecular degrees of freedom, and the near equality of the oscillator
frequency and the inhomogeneous width (ω ≈ ∆ω). This can
be addressed within the framework of eq 20. When the
characteristic frequency of the distribution,ωo, and the spectral
width, ∆ω (which is characterized by the parameterσ), are of
the same magnitude the distribution function becomes markedly
asymmetric. The precise shape depends on the relative values
of the parametersωo andσ. This behavior is distinctly different
from that of isolated resonances for whichωo typically is much
greater thanσ. For the limiting case in whichωo , σ, the shape
becomes independent ofωo. Thus, for a fixed value ofσ, there
will be some value ofωo below which the distribution will cease
to evolve. For the parameters used to generate the data of Figures
4 and 5, the antisymmetric Gaussian distribution function ceases
to undergo any significant spectral evolution forωo < σ/2.

Thus, within the harmonic oscillator model presented here,
a saturation in the spectral evolution is expected as the oscillator
frequencies become small. Both effects noted here are mani-
fested in the spectral evolution that is evident in the data of
Figure 5. Both effects are unique to low-frequency modes, and
have no known analogue in the vibrational spectroscopy of high-
frequency intramolecular modes.77 Specifically, the condition
ωo < σ/2 is satisfied for solutions of less than approximately
25 vol % CS2 and appears to be the primary contributor to the
spectral saturation in this system. The conditionω e Γ/4 is
fulfilled for lower-frequency oscillators of the distribution at
all concentrations, and contributes to the ubiquitous presence
of the quasi-exponential relaxation.

The narrowing of the observed intermolecular spectral density
of CS2 on dilution in alkane solvents appears counterintuitive
at first glance. Experience with isolated, intramolecular reso-
nances teaches us that, on dilution, line broadening is expected,
with the maximum line width typically observed for the 50%
solution, reflecting the maximum number of local configurations
(maximum entropy). On further dilution, the (shifted) line will
narrow as the solute molecules become fully solvated. This line-
broadening effect is a consequence of the overlap of two (or
more) shifted Raman lines which correspond to differently
solvated species in the solution.

The same physical principles apply to the case of intermo-
lecular vibrational modes, with at least two additional con-
straints, however. Intermolecular modes, like their intramolecular
counterparts, can shift either to higher or lower frequency,
depending on whether the solute-solvent interaction is stronger
or weaker than the solute-solute interaction. They can even
remain effectively unshifted, as in the case of benzene/CCl4

solutions.67 For the present case, CS2-CS2 interactions are
mediated by the electrostatic multipole potential.17,26,27 A
substantial contribution to the interactions derive from the large
permanent quadrupole moments of the CS2 molecules.68 In
contrast, the multipole moments of the alkanes are all negligibly
small,23 such that alkane-alkane and CS2-alkane interactions
are small compared to CS2-CS2 interactions. It is expected,
therefore, that the intermolecular vibrational frequencies will
decrease on dilution in alkane solvents.17,27 An additional
constraint that must be recognized for intermolecular vibrational
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modes is the zero-frequency “barrier”: the oscillator frequencies
cannot become negative. More correctly, the low-frequency
shape of the spectral density function is determined by the time
scale of damping and dephasing processes in the liquid, which
is exemplified byΓ in eq 18 and appears to remain largely
unchanged78 through the dilution series.17,31 On dilution with
alkane solvents, as is discussed above, the higher-frequency CS2

molecular oscillatorsmustshift to lower frequency. To the extent
thatΓ is approximately constant throughout the dilution series,
the lower-frequency edge of the spectral line shape remains
largely unchanged. The net effect is a compression (narrowing)
of the spectral density such that the intermolecular spectrum
for CS2 moleculescompletely solVated by alkane speciesis
compressed toward the low-frequency edge of the intermolecular
spectral density ofneatCS2. For intermediate concentrations,
the vibrational spectrum will lie between these two extremes.
Thus, for CS2/alkane solutions, to the extent that the spectral
evolution is determined primarily by changes in the multipolar
intermolecular potentials, the OKE spectral density is expected
to benarrowerthan that of theneatCS2 solution. The arguments
presented here apply to the case of a strongly interacting solute
diluted by a weakly interacting solvent. If the roles of the solvent
and solute are reversed, the oscillator frequencies will shift
higher, and the broadening expected from considerations of
intramolecular resonances will be observed. As is evident from
a comparison of the data of Figures 1-6 this effect, which might
be referred to as thefrequency pile-up effect, can have a
significant impact on the experimental observable.

A central issue, that has been the subject of recent de-
bate,27,32,33,36,38,39,59is the degree to which the intermolecular
modes in liquids are inhomogeneously broadened. It is widely
acknowledged that third-order coherent Raman techniques, such
as the optical Kerr effect, cannot directly demonstrate the
presence of inhomogeneous broadening in the nuclear coordi-
nates.45 Line shape analyses that are based on specific models
for molecular motion, however, can provide insight into the
physical processes relevant to the experimental observables.
Such analyses have been utilized for many years, with varying
degrees of success, to investigate infrared and Raman vibrational
spectra, and more recently for the analysis of stimulated Raman
spectrocopies, including the optical Kerr effect. The multimode
curve-fitting analyses noted above, which have provided
significant insight into the ultrafast dynamics of molecular
liquids, fall into this category.

To the extent that the intermolecular vibrational dynamics
of liquids can be described in terms of a linearly independent
collection of oscillators (harmonic or otherwise), the present
results make a strong statement with regard to the question of
inhomogeneity in liquids. Within the framework of the quantum
oscillator model, the presence of the characteristic temporal
signature that is observed for CS2, solutions of CS2 with alkane
solvents, and numerous other liquids,is a direct indication that
the mode in question is inhomogeneously broadened.79 Stated
conversely, the characteristic temporal signature of intermo-
lecular modes in liquids, a fast Gaussian-like decay followed
by a slower quasi-exponential relaxation, cannot be accounted
for in terms of exponentially damped sinusoids without the
consideration of inhomogeneous broadening. In view of the
quantum HO analysis presented above, the alternate possibilities
of two independent modes, or a single homogeneously broad-
ened degree of freedom with the required complex, two-
component relaxation dynamics respectively invoke a complex-
ity in the liquid structure that is inconsistent with the symmetry

of CS2, and a response function that cannot be supported by a
conventional equation of motion.

It is useful to diverge briefly on this point. The term
“inhomogeneous broadening” often connotes a static distribution
of molecular environments, as might exist in a glass. Clearly
such a condition is inappropriate in liquids. It is more appropriate
to refer to a mode as being “inhomogeneously broadened on a
given time scale”. This is equivalent to stating that, at a given
instant in time, there exists a distribution of molecular environ-
ments (intermolecular potentials) in the liquid, and that this
distribution persists for a finite period of time. For intermolecular
modes, the relevant time scale clearly is that of the damping
and dephasing (including spectral diffusion30) processes that alter
the local intermolecular configuration. For most molecular
liquids at room temperature, this time scale lies somewhere
between 500 fs and 1 ps. The destructive interference effects
that result in the rapid Gaussian-like relaxation evident in the
OKE of CS2 and other liquids require that the local structure
persist for only a few hundred femtoseconds (the relevant time
constant is 160 fs for CS2 and 80 fs for benzene). Thus, for the
effects of inhomogeneous broadening in liquids to be manifested
in a femtosecond NLO experiment, it is sufficient that the local
structure persist for only a few hundred femtoseconds.

Fifth-order two-dimensional (2-D) Raman experiments hold
promise for separating experimentally the homogeneous and
inhomogeneous contributions to the intermolecular vibrational
line shape.45,46,70For the past several years, significant effort
has been expended toward developing and interpreting the fifth-
order experiment,32-44 with recent work41,42revealing that many
of the earlier results were contaminated by cascaded third-order
signals that mask the weak fifth-order signals. Recent experi-
ments have been designed to minimize such interfering signal
contributions.43,44 In the fifth-order intermolecular Raman
experiment, a pair of time-coincident pulses creates a vibrational
coherence; a second pair of pulses, separated from the first by
a delayτ2, alters that coherence in a manner that can initiate a
rephasing process that serves to remove the inhomogeneous
contribution to the relaxation. The resulting coherence is probed
by a fifth pulse (at a delayτ4 relative to the second pulse pair)
in a manner that is analogous to that of third-order experiments.
The rephasing is expected to be complete whenτ2 ) τ4, with
the effects of inhomogeneous broadening expected to appear
in the 2-D data as signal amplitude alongτ2 ) τ4 (in the ideal
case, for a static distribution, a ridge alongτ2 ) τ4 is expected).

For the fifth-order experiments reported to date, the 2-D signal
decays very rapidly alongτ2 ) τ4,43,44with no evidence for the
expected “ridge”. Correspondingly, in apparent disagreement
with the conclusions based on third-order measurements16,17,27

and the successes of instantaneous normal mode calcula-
tions,48,49,52,54 the fifth-order measurements suggest that the
intermolecular spectrum of CS2 is well described in terms of
homogeneous broadening of the intermolecular vibrational
coordinates. Although additional work will be required to fully
understand both the third- and fifth-order results to resolve this
apparent contradiction, we make a few relevant points here. The
lowest-order contribution to the fifth-order response involves
the second-derivative term in the polarizability expansion.25,51,52

Recent work suggests that the fifth-order signal arises largely
as a result of collision-induced (dipole-induced dipole) effects,
with the contribution from molecular (libration-like) coordinates
expected to be negligible.51,70In contrast, recent work52 suggests
that the third-order signal for nonassociated liquids (including
CS2) arises predominately from the first-derivative term, and is
dominated by molecular contributions.51 Because the frequency
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dependence and damping/dephasing characteristics of molecular
and collision-induced contributions to the many-body polariz-
ability tensor are expected to be different, it is not particularly
surprising that the two experiments lead to different conclusions
regarding the degree of inhomogeneity associated with the
intermolecular coordinates.80 Therefore, rather than concluding
that the intermolecular coordinates are homogeneously broad-
ened, it might be more appropriate ask why the inhomogeneous
character of molecular liquids is not manifested in the fifth-
order experiment. One consideration in this regard is the
suppression of the rephasing process through mode coupling.40

Instantaneous normal mode calculations of the 2-D fifth-order
response reveal that nonlinear polarizability coupling between
modes (mode mixing) results in a significant suppression of
the rephasing process.40 Further, with the inclusion of vibrational
relaxation in the calculations, all evidence for inhomogeneous
broadening is eliminated.40 Although the significance of these
results is a subject of current discussion, it is clear that a more
complete understanding of the fifth-order results is required
before conclusions are made regarding the degree of homogene-
ity of intermolecular coordinates.

Finally, we address the issue of the coordinate dependence
of the molecular polarizability in the third-order experiment.
The results presented here illustrate that a response function
derived on the basis of a polarizability that is linear in the nuclear
coordinates (the Placzek approximation51) is sufficient to
characterize the third-order nuclear dynamics of CS2 and its
n-alkane dilutions. In the most general case, however, higher-
order terms can contribute to the polarizability response function.
In the circumstance that the coefficient of the quadratic term is
nonvanishing, the response function (eqs 16-18) acquires a
second (2 “phonon”) contribution37

whereR2 is defined by the expansionR(q) ) R1q + R2q2 +
‚‚‚. In this case, the spectral density generated by the Fourier
transform operations is no longer a linear superposition of single
phonon line shapes, and contains an additional two phonon
contribution that results from the quadratic dependence of the
polarizability on the nuclear coordinateq. Therefore, in the
general case where the nuclear dependence of the polarizability
is unknown, interpretation of the spectral density deduced by
data manipulations such as eqs 2 and 3 in terms of a sum of
one-phonon vibrational line shapes may be inappropriate.
Furthermore, if the polarizability is known to be nonlinear in
the nuclear coordinates, data manipulations such as the subtrac-
tion of empirically identified response components cannot be
identified with removing the contribution of a particular
coordinate from the response function of eqs 5 and 6, since
individual coordinates may appear in both the linear and
nonlinear parts of the nuclear response function. The second
term in the response function explicitly includes coupling
between nuclear coordinates and a dependence on line broaden-
ing mechanisms that is distinct from the linear term.25

A response function of the form represented by eq 23 was
utilized in the analysis of the third-order response of pure liquid
water,25 where unlike the case of CS2 and other nonassociated
organic molecular liquids in general, the time constant of the
longest-lived component of the measured OHD-OKE response
did not agree with the reorientation rate extracted from non-

optical measurements, an observation that suggests that nonlinear
coordinate coupling may be significant.25 Because the spectral
density of the second term is biased to low frequency by the
1/ω2 coefficient, the slow, low-frequency dynamics are expected
to be a reasonable diagnostic of the need for the inclusion of
nonlinear coordinate terms in the response function. The
assumed response function linearity explicit in eqs 6 and 18 is
supported by the agreement of the longest-lived component in
the CS2 OHD-OKE response with the DSE behavior of
molecular reorientation as measured by nonoptical techniques.

VI. Conclusions

An inhomogeneously broadened quantum-mechanical har-
monic oscillator model of intermolecular nuclear coordinates
has been applied to the analysis of subpicosecond optical Kerr
effect dynamics of neat CS2 and its binary solutions in alkane
solvents. For an inhomogeneously broadened distribution of
oscillators, this model predicts naturally the bimodal character
of the subpicosecond OKE dynamics, a Gaussian-like ultrafast
decay (1/e time≈ 160 fs for CS2 at 295 K) and a slower, quasi-
exponential relaxation (1/e time≈ 450 fs at 295 K), that is
universally observed in molecular liquids. Further, the spectral
evolution effects that are observed on dilution with weakly
interacting alkane solvents (band narrowing and downshift in
the peak frequency) are remarkably well accounted for by this
simple description.

A particularly satisfying result of this analysis is the ability
to accurately represent the complex, apparently multicomponent
subpicosecond dynamics with a response function for a single
(intermolecular) vibrational coordinate. Analytical descriptions
of the bimodal character of the dynamics derived from multi-
mode curve-fitting16,17,27 require at least two independent
intermolecular coordinates. For a rodlike molecule such as CS2

that decomposition, whether the second coordinate is presumed
to be associated with interaction-induced effects, molecular
complex formation, or some other interaction, is difficult to
justify.

Furthermore, within the quantum mechanical harmonic oscil-
lator representation of the nuclear response functions, inhomo-
geneous broadening of the nuclear coordinate is required to
achieve this result; the presence in the OKE data of the
characteristic Gaussian-like ultrafast decay followed by a slower,
quasi-exponential relaxation, is a clear indication that the
intermolecular dynamics are inhomogeneously broadened. This
characterization of the nuclear dynamics does not contravene
the theoretical limitations on the information content of third-
order nonlinear spectroscopy in the nonresonant regime since
it is a model-based result. The advantages of the third-order
experiment and the data analysis we have described are their
directness, simplicity, and the uniqueness of the physical model
for the constraints of the CS2/dilution system. While the
successful implementation of this analysis to CS2 and its binary
solutions in alkanes is possibly a consequence of the simplicity
of the intermolecular structure and dynamics of this system,
the result remains remarkable due to the simplicity and
generality of the model.

It is important to recall that the universal behavior of low
frequency intermolecular dynamics in liquids cannot be recov-
ered from the classical oscillator model for the intermolecular
coordinates: the mutual pulling of the oscillator damping and
frequency results in a continuous loss of oscillator energy to
the surrounding solvent bath and a dynamical characteristic that
contravenes the experimental observable. Conversely, we have
shown that a quantum-mechanical oscillator model, where

rV
(3)(ω,τ1) )

R1
2

2mω
e-Γ1τ1 sin(ωτ1) +

R2
2p

2m2ω2

∑
λ

(2λ + 1)P(λ)e-Γ2τ1 sin(2ωτ1) (23)

7970 J. Phys. Chem. A, Vol. 105, No. 34, 2001 McMorrow et al.



stationary energy levels are damped in the weak coupling limit,
results in an impressive fit to the experimentally observed
dynamics with a minimum of model assumptions and con-
straints. The details of the physical implications of the distinc-
tions between the classical and quantum representations will
be explored in a future report.

In future work, we will extend this analysis to address the
temperature-dependent OKE dynamics of CS2 and acetonitrile
liquids, and to systems such as substituted benzenes56 for which
the lower molecular symmetry demands the invocation of more
than one intermolecular coordinate. At low temperature the OKE
spectral density of molecular liquids develops a pronounced
bimodal character,50 with the high-frequency contributions
shifting to higher frequency.50 In the time domain, the OKE
transients develop significantly more pronounced oscillatory
character. A preliminary analysis indicates that the quantum
oscillator model does a good job of describing the spectra and
dynamics, despite the increased complexity of the lower
temperature dynamics. In the analysis of temperature-dependent
structural dynamics, we will pay particular attention to the
treatment of damping, which was limited here to be level
independent (but more generally can include level-dependent
damping37,50). The monosubstituted benzene liquids have been
recognized by ourselves56,60 and others61 as exhibiting OKE
dynamics consistent with multicoordinate (mode) molecular and
intermolecular structure. The efficacy of the quantum HO model
to yield a unique characterization of the low-frequency nuclear
dynamics and spectral density with a multicoordinate system
and level-dependent damping will be a valuable test of the limits
of this analysis. Finally, we note that recent experimental
developments permit complete characterization of the indepen-
dent third-order nonlinear-optical tensor elements.71-73 These
developments permit independent investigation of the isotropic
scattering contributions which, for intermolecular coordinates,
arise purely from interaction-induced effects. Analysis of the
interaction-induced contributions to the third-order nonlinear-
optical response is expected to provide new insights into the
nature of the intermolecular coordinates of liquids.
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